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Scattening in the Time Domain from Submerged Elastic Shells at Coincidence Frequencies

M.F.Werby

NOARL, Stennis Space Center, MS 39529, US A

It is known that when scattering from elastic shells, a large
resonance resonance is produced at frequencies corresponding
to vatues in which the flexural phase velocity is roughly equal
to the speed of sound in the flutd A svstematic analyvsis
indicares that the targe response is due mainly to water born
waves ( Jabeled A waves ) which have narrow half-widths and
manifest themselves as pronounces spikes in the fornm function
as well as weaker tlexural resonances ( labled A0) which have
rather large half-widths and produce an envelop effect due to
overlapping resonances over a broad frequency range. These
results are analvzed within the cortext of a new time domain
resonance scattering theory and are shown to produce
characteristic transtent return signale. Frog, thiose signals it
pessiblc o carculate both the half-width of the A waves as well
as their group velocities

Introduction

Resonances are characterized by the tact that they occur at
diserete vatues ol trequency and when they occur, a distinet
event takes place The eventas usually distingmishable and can
be related 1o o pancular process. Our mterest in this paper is to
deternune the nature a grouping of resonances in some
frequency band ain the tme domain for back <cattering from
submerged elastuce targets. The freqeency doman case has been
ivestigated tor many years for submerged elaste spheres and
infinte cyhinders for both sohds and shells: The naiure of hack
scattered returns s well understood and quue predictable for the
frequency domamn case. In contrast, time domain solutions
which encompass the frequency region for which resonances
are present are not so well understood 10 the context of a
resonanee seatiering lhmry' FORST ) Inthic paper we outhne
atme domain theory based on RST rechmigues and set some
condittons that enpable one to make umgue interpretations of
resulin: We then apply the resulis tor the problem of ume
doman solunons at concrdence frequeney ( the frequency at
which the phase velocity of the flexural wave is equal to the
spred of soundan the fluid y and show interesting results for
that regron We mterpret the results within the context of the
theory outhned i the following section.

Time Domain Resonance S¢attening Theory:

The partial wave series that emerges from normal mode
theory for separable geometnies can be represented in distinet
partial waves or modes. Tt has been shown that a representation
due to a distinct mode { n } can be wnitten in the form:
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(;—)l“‘? is the resorance half-width

Here, we have absorbed the 2n+1 factor into the expression
We now conader the tvpe of pulses aselul in determining a
resonance in the time doman There are numierous wavs to do
this but we limit curselves the following form which allows us
10 isuiate a particular frequency region and at the same tme
limit the pulse time.
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where s=ct/a and Kk =2r/A

Here, we refer to w. as the carnier trequency The Founer
transtorm of this function 1s g1 and the scattered signal in the
time domain is then Ps 1n the expression below:

If we perform a Founer transtorm on the madal components
we armive at the following expression:
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That is. at a resonance the nme domain solution is simply the
prodect ot the halt width nimes a sinuosondal function times an
cxponential damping factor The time domain solution for a
nest of resonances ( N-my ) s then of the forn:

Ihe remaiming contributions due to the backscatter are small.

Now let us make the tollowing assumptions, which for
certnn situations are realistic We assume that we are in a
resonance region for which the resonance widths are fairly
constant and the resonance spacing is fairly uniform4

Ihese assumptions then lead to the following:
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It is seen from the above expressions that:

) The halt-width is asseciated wath the decay of the response
in the tme domain solution: the response decreases
exponentially with increasing value of the half-width. This is
not altogether unexpected since narrow resonances are
associated wath long ringing times and 1s analogous to well
defined energres being associated with long half-lives in
quantum physies cases,

by The larger the number of adjacent resonances ( 2M ) sensed,
the more sharply defined the return pulse or envelope function ¢
the beats ) and the more enhanced the return signal. Under
appropriate conditions we can get the group velocity of a
specific type of resonance.

¢) The larger the carnier frequency the more oscillatory the
signal within the envelop.

dy If several adjacent resonances scnsed by a signal are
ditferent in character in the region of the carrier frequency then
it becomes difficult 1o interpret results in terms of a group
velocity associated with a particular resonance type; attempts at
such ntzrpretations could lead to erroneous results. For
example, if one senses two resonances, one a Rayleigh
resonance and one a whispering gallery resonance, the
extraction of a group velocity associated with a specific
resonance type resonance would lead to error.

Additional expressions can be obtained tn a manner similar to
the above development, but we will end our excursus here and
apply the resolts in the interpretation of the fotlowing cases.

Tine Domain Backscattering From at Coinewdence Resonance.
Atlow frequencies in a submerged fluid, antisymmetric Lamb

waves or flexural waves do not vield resonances until the phase
velocity of the flexural wave is about equal to the speed of

sound in the ambient fluid 50 The value in frequency tor
which this happens s referted to as the comadence frequency

There are. however, subsonic tlwd borne waves which
produce sharp 3.6 ( fluid borne ) resonances helow the
coincidence freauency. We will refer to these tlund borne waves
as pseudo-Stoneley waves and the related resonances preado

Stoneley resonances. consistent wath the ternunologs of Ret o
The " pseudo-Stoneley " resonances are well defined in parual
wave space. usually corresponding to only one partial wave
mode number and a very narrow half-width with a dispersive
phase velocity which approaches the speed of «ound tn the flud
with increasing frequency. They dimnmich o agmificance at the
point for which the flexural resonances begin o deminate It
has been observed that, both for tiat plates which are tind
loaded on one side and for submerged <hells, at comcrdence
one obhsgrves a very strong response. The aswodiated resonance
region has been referred to as the strong Hexurals? in the
literature and can be interpreted 1n terms ot a singulariy that
occurs when the wave number in the fluid is equal to that of the
flexural wave on the surface of the object® Although, this
interpretation is an idealization, since it would comrespond to
infinite loading at the surface. 1t 1< none the less a fairly refinhle
picture of what is happening. Indeed. at that point there is a
phase change as well which accounts for the envelope of the
resonance curve at coincidence ( shown here ) where the waves
are in phase until coincidence and out of phase afte.wards. Our
interest here is in examining the time domain responce  since
we expect the conditions of descnbed in the previous section o
be partially met over a broad frequency range and thos to vield
a strong coherent responce with a carner frequency an the
neighborhood of the frequency at comadence Accordinglyv, we
examune the case of CW pings for two examples for which one
expects coinaidence resaninces to anse. This 1s certanly
suggested by the strong responses in Figs. 1b and 2b at the ka
values 113 and 87, respecuvely, for steel and WC Further,
we use Mindlin-Timoshenko 8 thick plate theory 1o detennine
the value for which the tlexural phase velocity will equal the
ambient speed of sound 1in water The expressions we uve are
from flat plate theory but they prove to be quite reliable
predicting the phase velooity for the curved surfaces of the
spheres at the frequency hmits i the vicinity of the vilue at
coincidence frequency Ttis remarkable that theyv in fact do
predict the frequency range in the frgures which match the
strong flexurils. We determine that the expression for the phase
velocity is:
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Hlere Ceis the shear speed and v is the poisson ratio of the
maternl The rato (h/ is a thickness parameter and V,, is the
wpeed of sound in water ‘The remaimng defimng capressions in
the cquations are discussed in Ref. 8. For the cases presented
here (hiay s 0,01 where a is the radius of the sphere. The
aronp velociy is detenmined by us o be
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In both free. 3 and 4 the phase and group velocities are
plornted for ka values out 1o 200 for 19 thick steel and WC
shetls .

We now examine the tme domain calculations. For the first
example we examine the steel shelb of 15 thickness, illustrated
in Fig. 1a In this case we observe a well defined envelope with
pmnImncM oscillations within the envelope consistent with
expressions in the previous scction. The enhancement due 1
the factor 2M is obvious both here and in Fig. 2a. We can
obtain the group velocity from the peak to peak distance. The
results leads to a value of 2.23 km/sec. The expression for
flexural waves predicts a value of 2.53 ki/sec at coincidence
and a range of 2.44-2.68 km/sec. over the ka range of 100-140
where the strong flexurals are significant. In that range the
phase velociiv ranges from 1.37-1.58 knysec. The values of
the predicted and extracted group velocities are not in extremely
rood agreement; the disagreement is about 12%. This may be
due in part to the fact that flat plate theory may be in error or
madequate for spherical fluid-loaded targets, the conditions in
the previous section are not well met and there must be a
mixture of pseudo-Stonley waves leaking into the fluid. We
have determined the group velocity of the pseudo-Stonley
wave for this case 1o be 2,16 kiw/sec hased on plaic theory.
Maoreover the phase velocity is in the rarge from 88% to 98%
of the speed of sound in the flutd. This value of group velocity
1s within 3¢ of the extracted value from the time domain
solution. Moreover the pseudo-Stonley resonances have very
narrow widths while the flexural resonances are quite large.
The conditions in the previous section would indicate that the
flexural resonances would rapidly dampen while the pseudo-
Stonley resonances would attenuate solely. Thus, based on the
similarity of the extracted group velocity on that of the pseudo-
Stonley wave and the conditions in the previuus section we
conclude that the time domain calculations in Fig. 1a represent
pseudo-Stonley resonances.

The final exampic is tor the WC shell of 1% thickness. The
results here are consistent with that of the steel case and are
illustrated in Fig. 2b . Here the group velocity was extracted to
be 2.33km/sec. as opposed to the plate theory value of
2.65km/sec for flexural waves. The range of values for the
group velocities predicted from the flat plate theory was from
2.49-2 78 km/sec over the ka range of 74-102. Here again the
difference was 12% hetween plate theory and the extracted
value. On the other hand, the group velocity for pseudo-
Stonley waves is 2.26 which is within 3% of the extracted
value. As in the previous example the pseudo-Stonley
resonances are quite narrow while the flexural resonances are
broad and we conclude that the results of Fig. 2b represent
predominantly pseudo-Stonley resonances.
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Conclusions

We conclude this section by commenting on the above
results. We beheve that the tesults shown here demonstate that
if proper conditions are met in time domain studies quite
reliable and mteresung interpretations can be made, while it is
casy 10 come 1o erroncous conclusions when the proper
condinons are not met. The trick obviously i< o control the
pulse thnes as well as the ecarrier frequency if one wishes 10
mnterpret such quantnes as group velocities correctly. Further,
there can obviously be condinons for which it s not possible to
make sense of a group velocity within the context of a particular
tvpe of phenomena (e, Lamb waves, Rayleigh waves, etc )
particularly for narrow frequency bands in which different
types of resoninces are sensed. In particular, one should not
mterpret an envelope function as being associated with a
particular group velocity which can be used 10 extract the group
velocity of a Harticular type of resonance. Finally, it is difficult
to sce how the presence of a single resonance or for that matter
very low frequency resonance scattering where phase velocities
are highly dispersive and resonance widths are usually guite
varible can lead to unambiguous results
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